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Interferometric measurement of temperature gradient 
reversal in a layer of convecting air 

By JOHN GILLE 
Department of Meteorology, Florida State University, Tallahassee 

(Received 31 March 1967) 

Experiments in which a horizontal layer of convecting air is probed by one beam 
of a Michelson interferometer are described. When the localized interference 
fringes are horizontal, they indicate that the beam is wide enough to provide a 
suitable horizontal average. When the fringes are oriented nearly vertically, 
quantitative temperature measurements may be made. Results are presented for 
ratios ( A )  of Rayleigh number to critical Rayleigh number of 1.48,3-81 and 16.0. 
The temperature profile becomes more distorted from linear as the Rayleigh 
number is increased. An isothermal central region and thermal boundary regions 
each occupy one-third of the layer at  h = 3.81. By h = 16.0 each boundary re- 
gion occupies only one-quarter of the layer thickness, and the central region 
shows a reversed gradient. No full calculation is presently available to compare 
to the measurements. However, the shape assumption, using the first eigen- 
functions of the linear stability problem, predicts the profile rather well for 
h = 1-48 and 3-81 if Nusselt number agreement is imposed. 

1. Introduction 
Recent work on finite amplitude convection, reviewed by Segel (1966) and 

Roberts (1966), aims a t  calculating the fields of velocity and temperature when 
the Rayleigh number exceeds the critical Rayleigh number by a finite amount. 
Predicted quantities subject to experimental test are the heat flux through the 
layer, the velocity in a plane, motion form and scale, and temperature distribu- 
tion. Numerous heat flux measurements have been made (e.g. Malkus 1954a; 
Silverston 1958) but they are not a sensitive way to explore the internal state of 
the convecting fluid. Velocity measurements pose experimental problems. Motion 
form and size are usually assumed, rather than derived. 

Measurements of temperature distribution are a more convenient and exacting 
manner of probing the fluid layer. Thomas & Townsend (1957), Deardorff & 
Willis (1966) and Somerscales & Dropkin (1966) have made such measurements 
with probes in the fluid. The probes must affect temperature and velocity in a 
manner difficult to calculate, however. 

This paper describes the results of measuring the temperature field in a con- 
vecting layer of air by the interferometric method used by Gille & Goody (1964) 
(hereafter referred to as I) in studying stable temperature profiles distorted by 
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radiative heat transport. The interferometric method has the advantages of intro- 
ducing no physical probes into the fluid, and giving a nearly instantaneous picture 
of the horizontally averaged vertical temperature distribution. 

2. Experimental details 
The convection cell has been described in I and in greater detail by Gille (1964) 

(hereafter referred to as 11). Briefly, it consisted of a horizontal layer of air 
bounded above and below by flat circular aluminium plates, 25.34 cm in diameter. 
The plates were maintained at different temperatures, and held apart by spacers 
which set the thickness of the air layer. Layer thicknesses of 2cm (actually 
1.987) or 3.1 em (actually 3.099) were employed in this investigation. The plates, 

Convection Vacuum 

FIGURE 1. Schematic illustration of the effect of rotating the fringes optically. 

with insulating disks and brass plates through which temperature controlled 
water was passed, were assembled in a vacuum tight aluminium vessel. Tempera- 
tures in the plates could be measured with thermocouples. By measuring tem- 
perature differences across the insulating disks, the heat flux could be determined. 

The interferometer has also been described in I and 11. It was of standard 
Michelson design, with one optical arm passing through windows and the air 
layer, while the other (reference) arm was outside the pressure vessel. A weighted 
wire hung in the reference arm to provide a vertical fiducial mark. When the air 
layer is isothermal, wedge fringes may be formed. If a vertical temperature differ- 
ence is now imposed, at  any level the fringes will be displaced relative to the centre 
by an amount proportional to the temperature difference between this level and 
the centre. The isothermal layer gives fringes characteristic of the optical system, 
which are identical to those obtained by evacuating the pressure vessel. 

The optical characteristics may be altered for convenience. I n  particular, since 
we expect a vigorously convecting fluid to have a nearly isothermal central 
region and large gradients concentrated in the boundaries, we may rotate the 
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isothermal state through a large angle to better display behaviour in the boun- 
dary region. This is illustrated schematically in figure 1. 

Experimental values of the Rayleigh number R were chosen for this investiga- 
tion to give one case slightly above the critical Rayleigh number R,, one several 
times as large, and another as high as the apparatus could reasonably go. The 
latter was limited by the size of the optics, the fact that the vessel could not be 
overpressured, and the desire to keep the local Rayleigh number fairly constant 
over the layer. With the temperature difference (top minus bottom) = A0 = 
- lo", R varies by 13 yo from top to bottom. 

A 0  ("C) R 
R 

1,786 

1 C 1.987 - 3.32 2,640 1.48 
2 S - 3.42 
3 C - - 8.71 6,800 3.81 

5 S - 10-49 

- - 

4 C 3.099 -9.51 28,500 16.0 
- - 

? C = unstable gradient; gas convecting. 

TABLE 1 :Experimental conditions 

S = stable gradient. 

The experimental situations finally analysed are listed in table 1. The positive 
Ad's in the fourth column were stable cases, used to find the effective central 
optical length 1, (see below). The data in I were used to calculate values of R in 
column 5.  The last column shows R divided by R, determined for air with this 
apparatus, 1786, (I). This is higher than the theoreticalvalue 1708, but confirmed 
by recent measurements of Thompson & Sogin (1966). 

An experimental run consisted of bringing the air into steady convection for 
several hours, making three photographs (0.6 full size) of the fringes on glass 
plates, evacuating the system and photographing the vacuum fringe system three 
times. Temperatures and pressures were read before and after each series of 
photographs. 

As in I, the space on the photographs between the boundaries was divided by 
21 equally spaced lines labelledj = 0, & 1 , . . . rt 10, the latter two corresponding 
to the upper and lower boundaries respectively. Traces of the microphotometer 
scans along these lines were compared to the j  = 1 trace to give means and stand- 
ard deviations of the fringe positions. When the vacuum fringe positions are 
subtracted from the convection fringes, the fringe shift %.- Nl due to the fluid 
temperature distribution is obtained. On the traces, 1 mm corresponded to 0-01 
fringe, or about 0.0125 "C. 

We define a mean fringe shift antisymmetric about the centre as 

A$ - No = &(A$ - Nl) - (N-j - &)I. (1) 

By equation (39) in I, 
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where m is the index of refraction, p the density, h the wavelength of the beam 
(5461 A) and 0 the temperature. Subscripts s, 0,  j refer to conditions at STP, 
the centre of the layer, and the level j respectively. 1, is the central length over 
which non-isothermal conditions are applied. All of these quantities are known or 
measured with the exception of 1, and (Sj - Oo),  which is forced to be antisym- 
metric about the centre. 

From thermocouple measurements we have A0 = S,, - OFl0 = 2(4,  - So) but 
because of boundary and refractive effects N., - No cannot be measured. For the 
stable case where the profile is determined by conduction, we can fit a straight 
line to 3. - No, extrapolate to N,, -No, and calculate E,.  For the convective profile 
we have no such means of extrapolating to the boundary; values of lo determined 
from conductive situations in the same geometry were used. Results can be 
checked through a knowledge of the Nusselt numbers. 

We note that we could write 
3- N, = ~ ( j )  (ej- o,), 

where K may depend o n j  through 1. Even though determinations of A$ - No may 
be asymmetric, their relative variation shows how S,-S, varies in time. This. 
contains information about the relationship of variations at different levels which 
is lost in a series of measurements averaged over time at  different levels. Informa- 
tion of this type will not be discussed here. 

3. Representativeness of the measurements ; horizontal fringes 
The measurements represent an average over the width as well as the length of 

the sampling beam. They will be a suitable average if the beam width is larger 
than the scale of side-to-side variations. A special case occurs when there are no 
side-to-side variations; that is, the motion is two-dimensional in planes perpen- 
dicular to the boundary planes containing the beam direction. 

Experimental (Koschmieder 1966) and theoretical (Schluter, Lortz & Busse 
1965; Roberts 1966) studies lead us to expect the interferometer beam to traverse 
12 or 8 round roll-cells at the two plate spacings, with a possible small effect due 
to the centre roll. Since Koschmieder’s data only goes to R = 5Rc, the possibilities 
of three-dimensional motions at large h = R/Rc cannot be ruled out. 

The strongest evidence for representative averaging is obtained by orienting 
the vacuum fringes parallel to the bounding planes. With fluid in the layer, these 
fringes are isotherms. The spacing of the fringes depends inversely on the angle 
between the two reflecting surfaces, when vertical variations of optical path are 
included. 

When central and boundary regions are well defined, the reference mirror can 
be adjusted to nearly compensate for the central region (central mode) or for the 
boundary region (boundary mode) as illustrated in figure 2. Fringe spacing pro- 
vides a quantitative measure of temperature gradient, but is much less sensitive 
than the method discussed above. We shall only consider some qualitative 
characteristics of the horizontal fringe photographs. 

Horizontal fringes for h = 1.48 are shown in figure 3a, plate 1, where the varia- 
tion in planes parallel to the boundaries is seen to be small, as expected. Fringes 
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for h = 3.6 (central mode) are shown in figure 3 b,  plate 1, where some horizontal 
variation is seen. Sequential pictures showed time-dependent behaviour, with 
the formation and decay of buoyant regions in times of 20-30 s. It was later dis- 
covered that A8 was changing slowly during this time. These may not be repre- 
sentative of the steady state. 

Upper plate Fringc 
I 
0 
0 

Variation of 
optical path 
showing Mirror 

surface 
on p(z) 
dependence Y 

Lower plate 
mode 

Boundary mode 

FIGURE 2. Schematic side view showing the formation of horizontal fringes. 

Photographs in the central mode with h = 16.0 are shown in figures 3c,d,e, 
plate 1, where d follows c by 20 s and e follows d by 2 s. Horizontal and temporal 
variation is clearly shown, but the beam is wide enough to average approxi- 
mately equal amounts of upward and downward fringe displacement, thereby 
constituting a reasonable average. 

By contrast, figure 4, plate 2, shows the two photographs in the boundary 
mode at h = 16.0. 

4. Quantitative measurements with perpendicular fringes 
4.1. The determination of 1, 

Photographs of the fringes for conduction with 2 cm spacers (run 2) are shown in 
figure 5, plate 2, where the right-hand fringes are the reference state, and the 
left-hand fringes show air heated above. Note that both sets of fringes are very 
nearly straight lines, and that the conduction fringes have their end-points 
rotated clockwise from the vacuum reference position. - 

By fitting a line of the form 
N,-N, = aj+bj3 

to the measurements from the photographs, b was shown to be statistically in- 
significant. The linear term immediately yields N,,-N,, which was inserted in 
(2) to obtain 

1, ( 2  cm) = 23.76 & 0.13 cm. 

This is a considerable correction to the plate diameter of 23*34cm, but in 
excellent agreement with the value 23-86 & 0.07 cm obtained in I. 
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The same procedure yields 
Z0(3.1cm) = 26.10t0.35cm 

for run 5 .  This is about 10 % greater than lo (2 em), indicating that the larger 
plate separation and temperature difference lead to greater extension of the 
temperature field. The whole distance (26.06 cm) between the optical windows is 
now the effective working section. 

4.2. The convection fringes 
The convection and vacuum fringes for h = 1-48 are shown in figure 6a,  plate 3. 
Here the convection fringes are curved, indicating that the fluid motions have 
distorted the temperature distribution. The end-points are also rotated in a 
counterclockwise direction, because the temperature gradient is in the opposite 
sense to that in figure 5.  There is no well-formed boundary region, nor is the slope 
in the centre close to the slope of the vacuum reference state, showing that the 
centre is not isothermal at this low A. 

The interference fringes for h = 3.81 are shown in figure 6b, plate 3. Here a 
well-formed boundary layer is seen, with a central region whose slope is only 
slightly greater than the vacuum reference state. This implies a nearly isothermal 
central region. On one photograph there is an indication of a gradient reversal 
betweenj = - 1 a n d j  = - 3. Calculations for free boundaries (e.g. Veronis 1966) 
predict this effect at  about h = 4. 

The fringes for h = 16-0 in figure 6c, plate 3, show a further compression of the 
boundary layer. The slope of the centre region is less than in b, and on close in- 
spection appears to be less than the slope of the vacuum fringes. Recalling figure 
5 ,  we note that this would mean an increase of temperature with height in the 
central portion of the layer. 

4.3. Quantitative results 
The photographs of vacuum fringes were all quite similar having standard 
deviations per point ranging from 0.01 fringe at the centre to nearly 0.02 fringe 
at  the boundary. Agreement between photographs was excellent with no 
systematic differences. Weighted means have standard deviations ranging from 
0.002 to 0.011 fringe. This is a measure of the resolution of the system, and in- 
cludes the effects of inhomogeneities in the optical elements as well as fluctua- 
tions in open sections of the interferometer. 

For convecting fringes, the standard deviations go from 0-01 fringe in the 
centre to maxima at the boundaries of 0.02, 0.035 and 0.05, respectively, a t  
A = 1-48, 3.81 and 16.0. 

The mean of the vacuum photographs was subtracted from the individual 
convective photographs to obtain 3 determinations of 4.- No. Systematic differ- 
ences between photographs occurred for all A’s, with spreads considerably larger 
than the standard deviations of the points. Maximum spreads between photos 
were (increasing A )  0.10,0.70 and 0.23. Whether the large variability for h = 3.81 
is real or due to the sampling cannot be determined from the present data. These 
differences imply that the horizontal average is time dependent; i.e. that an 
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average with the present aspect ratios is not representative of an infinite spatial 
average. This is illustrated for h = 16.0 in figure 7 .  

The most interesting point at  this h is the backward bend in the central 
region of each photograph which confirms the small positive gradient suggested 

I I I I I I 
9 -  V C 9  - 

- 
- 

u?l - 
- 

- - 
3 -  - 

- 
- 
- 
- 

- - 
- 3  - - 

-9 - Vl - 
I I I I I I 

- 3  -2  -1 0 1 2 3 

Fringes displaced relative to j = 1 

FIGURE 7. Fringe distortion relative to j = 1 for h = 16.0. 
v, photograph 1 ; A, photograph 2; 0, photograph 3 .  

Height oft Region of$ 
Points showing* reversal mean 

Photograph 1 1 0.15h 0-35h 
2 5 0.35h 0*45h 
2 4 0.25h 0.45h 

reversal region reversal 

* Points showing reversal are those more than 2u to the reversal side of the axis. 
t Reversal region is region with positive gradient between successive pairs of points. 
$ Region of mean reversal is region over which bottom temperature is warmer than top 

temperature. 
TABLE 2. Summary of gradient reversal evidence 

by figure 6c, plate 3, in spite of the overall large negative gradient. Data on this 
reversal is summarized in table 2. It should be emphasized that the indicated 
reversal is independent of Z,, and appears because the slope in the centre of the 
convecting fringes is less than the slope of the vacuum fringes. The gradient re- 
versal is the most important result of this study, and is discussed further in § 6. 
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To get a first determination of the horizontally averaged profile, a weighted 
mean of the values from the individual photographs was formed for each h and 
made symmetric about j = 0. These were reduced to temperature differences 
with equation (2) and the appropriate value of lo, and non-dimensionalized by 
lA8l. The values obtained are given in table 3, as a function of dimensionless 
distance from the centre g = j/20. The second column under h = 1-48 is explained 
in the next section. 

v 
6 

0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0 

h = 1.48 
f-- 

A > 
1, = 23.76 22.56 

0-500 0.500 
0.412 f 0.005 0.433 f 0.005 

0.291 k 0.004 

0.168 f 0.004 

0.307 f 0.004 

0.177 f 0.004 

0.087 f 0.003 0.092 f 0.003 

3.81 

23.76 
0.500 
0.406 f 0.004 
0.310 f 0.003 
0.214 f 0.002 
0.140 f 0.002 
0.085 f 0.002 
0.041 f 0.002 
0.018 f 0.001 

0.025 f 0.002 0.026 k 0.002 0.002 f 0.001 
0.0 0.0 0.0 

16.0 

26.10 
0.500 
0.317 f 0.005 
0.208 f 0.004 
0.1 11 f 0.003 
0.041 5 0.002 
0.005 k 0.002 

- 0.010 f 0.001 
- 0.010 f 0.001 

- 0.005 f 0.001 
0.0 

de Graaf & 
van der Held? 

h P:, Heat flux (1953) 
1.48 1.77 f 0.10 1.27 & 0.12 1.34 
3.81 1-88 0.07 1.83 f 0.17 1.95 

16.0 3.67 0.09 - 3.46 
t Errors for experimental data are stated to be between 3 and 10%. These presumably 

lie in the region of larger errors, associated with small temperature differences at these 
relatively low values of A. 

TABLE 4. Interferometric and heat flux determinations of Nusselt number 

5. Nusselt number determinations 
The Nusselt number Nu is defined as the ratio of mean heat flux through the 

layer to the conductive heat flux down the mean temperature gradient. Since 
there are no motions at the boundary, the heat flux there is purely conductive. 
Denoting the boundary gradient by pl0 and the mean gradient by p = A8/h, 

since the experimental and theoretical gradients all appear rather constant near 
the boundary, and we have no information on their variation. Using temperature 
values from table 3, we obtain the results in the second column of table 4. 
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Nu can also be measured directly with this apparatus in the manner described 
in I. Introduction of the copper inset for the optical windows has a measurable 
effect on the heat flux, however, and Nusselt numbers determined simultaneously 
with interferometric profiles are not as precisely determined as Nusselt numbers 
measured separately. These determinations are listed in the third column of 
table 4. Unfortunately, time limitations precluded some auxiliary measurements 
on the cell with the wider spacing, so simultaneous determinations for that case 
are not available. 

The fourth column shows Nusselt numbers based on the empirical formula of 
de Graaf & van der Held (1953) based on their experimental data. 

The interferometrically determined boundary gradients for h = 3.41 and 16.0 
show satisfactory agreement with measured heat fluxes, in view of the errors, 
and suggest that the weighted mean profiles in table 3 are reasonably accurate 
descriptions of the mean state of the fluid. /3:o for h = 1.48 is much larger than the 
heat flux values (underlining the problem outlined above: the lack of knowledge 
of temperature and fringe shifts at two locations simultaneously, or alternatively 
lo). A change of I, by 5 % to 1; = 22.56 ern issufficient to convert the Nusselt num- 
ber to agree with the values of de Graaf & van der Held. Non-dimensional 
temperatures calculated with I ;  are shown in the second column under h = 1.48 
in table 3. 

6. Discussion of the results 
The results for the three convective runs are plotted together in figure 8. As 

anticipated, with increasing h the profile becomes progressively more distorted 
from the linear, conductive profile. Note that for h = 1.48, the change of I, from 
23.76 ern (dashed line) to 22-56 (solid line) changes the boundary slope, as in- 
tended, but leads to small differences in the centre. By h = 3.81, a nearly iso- 
thermal central region occupies the central third of the layer while thermal 
boundary layers are confined to the outer thirds on either side. When h = 16.0, 
each boundary region occupies only one-quarter of the layer, and the central 
region displays a reversed gradient. 

The occurrence of gradient reversal on every photograph for h = 16.0 indi- 
cates that the vertical temperature gradient averaged over an infinite hori- 
zontal area may well be reversed. The profile overshoots the centre by 14 % of 
Ad. Veronis (1966) predicts 6 yo for free boundaries. This will occur when warm 
fluid is forced toward the lower plate by rising hot fluid, before it has come to 
temperature equilibrium with the upper boundary. Some of the fluid's kinetic 
energy is used t o  lower warm light fluid, and similarly to raise cold dense fluid, 
increasing the potential energy of the system. 

This implies a positive correlation between the temperature of the driving 
elements and the driven elements, which would be present in any regular flow, 
whether of roll or polygonal form. The correlation would be expected to decrease 
as the motion becomes more disorganized and turbulent. Deardorff's (1965) 
calculations at  R = 6-75 x lo5 indicated a slight gradient reversal, but measure- 
ments at  1.5 x 106 did not. Further measurements with a long resistance wire 
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reported by Deardorff & Willis (1966) at R = 6.3 x lo5, 2.5 x 106 and 1.0 x lo7 
show no reversal. This may be due to the introduction of a conducting probe, 
but is very likely real since they have highly turbulent flows. Veronis (1966) also 
gives reasons for the temperature field associated with rolls to differ from that for 
a fully turbulent situation. 

0.5 
Observed ( A indicated) 

- 

- 
- 
- 
- 

- 

- 

A=585  
(rigid boundaries) 

- 0.5 0 5  

FIGURE 8. The observed mean temperature profiles (solid lines) plotted non-dimensionally 
with some theoretical predictions. For h = 1.48, the solid line is for I ,  = 22.56 em, the 
dashed line is for I,, = 23.76 em. 

Thomas & Townsend (1957) using a Wollaston wire probe, found a region of 
gradient reversal at  R = 6.75 x lo5, but ascribed it to large-scale circulation in 
the apparatus. 

This result is also indicated by the refractive measurements of Schmidt & 
Saunders (1938), although they do not comment upon it. At h = 7 in water (their 
figure 4a) there is no measurable gradient in the centre of the fluid, as they state. 
They apparently did not look for gradient reversal, nor is it  clear whether their 
arrangement was sensitive enough to detect it. In  their figures 4d and 4e (for 
water at  h = 76) some of the lines extend below the indicated centre of the layer, 
implying regions of reversed gradient. In fact, some images in 4d are below the 
lower boundary, requiring a reversed gradient. 

Although the central gradient is adverse, the mean flux of heat is upward. 
The counter gradient fluxes disagree with the suggestion advanced by Malkus 
(1954b) that ' . . .in the absence of mean forces other than those due to the tem- 
perature distribution itself this mean heat flux, H ,  can never be up the average 
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thermal gradient'. By discussing the local change of thermal variance, Dear- 
dorff (1966) has shown that such fluxes are possible, due to very buoyant elements 
which penetrate the stable region. 

The experimental result has an immediate implication for the Malkus theory of 
turbulence (Malkus 1963; Spiegel 1964). In  one form, this theory says that the 
state which will be observed in a convecting layer will be that one which maxi- 
mizes the heat transport subject to constraints including the requirement that 
the mean gradient be everywhere non-positive. This particular constraint in its 
absolute form now appears in some doubt. However, this constraint is not re- 
garded as fundamental to the theory by some (Howard 1963; R. S. Lindzen, 
private communication). The present result is certainly not a refutation of the 
Malkus theory. 

7. Comparison with theoretical profiles 
There are no published profiles for rigid boundaries which include the effects of 

higher spectral components. Kuo (1961), Veronis (1966) and Promm (1965) have 
made detailed calculations for free boundaries which agree reasonably with each 
other. KUO'S curve for free boundaries at h = 1.5 in the upper part of figure 8 
shows considerably greater profile distortion than that observed, as one might 
expect. 

The approximate calculations of Herring (1964) for h = 2.34, 5.85 and 58-5 
(boundary only) are shown in the lower part of figure 8. They agree reasonably 
well with the observations, although they are too distorted for Iarge h (Veronis 
1966). 

Roberts (1966) reviews the manner in which the shape assumption and power 
integrals may be used to compute the mean temperature profile near h = 1. 
This may be written 

where 6 = j/20, J? = 1.445, 

and Tc, we are eigenfunctions of the linear stability problem for temperature 
departure from the horizontal mean and vertical velocity. These functions are 
tabulated by Reid & Harris (1958). 

Since Nu (theoretical) = - (819/8<)*~ = 1 + rh-l(h- 1) the deviation from the 
linear gradient may be written 

e(g)-so+51Ae1 - - [Nu(theoretical) - 11 [c-F(c)] .  
lael (3) 

These predicted distortions, shown as solid lines in figure 9, are larger than the 
experimental values. This technique also yields Nusselt numbers larger than 
observed, suggesting that we write 
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The dashed lines in figure 9 show these distortions, which agree well with 
observed values. The first eigenfunctions are able to predict the shape of the 
temperature deviation up to nearly four times the critical Rayleigh number, 
although the amplitude calculated from the power integrals is too large. The clear 
implication is that higher modes are excited and consume energy, but contribute 

FIGURE 9. Profile distortion at A = 1.48 and 3.81. The full line is computed according to 
(3), the dashed line according to (4). The points are measured; 0, h = 1.48; A, h = 3.81. 
Standard deviations are less than the size of the symbols. 

little to the heat flux and average temperature field. At A = 16.0 the solution 
involving a single eigenfunction is very much more distorted than the observa- 
tions when boundary Nusselt numbers are matched. Higher modes are playing 
a large part at  this A. 

Platzman (1965) and Roberts (1966) performed elaborate calculations which 
yielded profiles more distorted than the power integral calculations, in greater 
disagreement with the observations. 

There are no other detailed measurements of temperature distribution for this 
range of Rayleigh numbers in air known to this writer. Measurements in liquids 
with probes appear to  have large errors. 

8. Conclusions 
The most important result is the discovery of the region of reversed tempera- 

ture gradient at high Rayleigh numbers, as predicted numerically. The reversal 
is consistent with the photos of Schmidt & Saunders (1938). A n  explanation has 
been offered for the failure of Deardorff & Willis (1966) to observe gradient re- 
versal at much larger Rayleigh numbers. Further numerical work should be done 
to calculate profiles between rigid boundaries for A’s close to the experimental 
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ones. More experimental work would be desirable, to explore the characteristics 
of the temporal variation and h dependence of the region of reversal. 

The progressive distortion of the profile with h is in agreement with intuitive 
understanding. The accuracy of the distortion predictions based on the first 
eigenfunctions should be viewed with caution, because the constraints impose 
considerable agreement. None the less, the eigenfunction predictions agree with 
observations considerably better than a parabola or sine function similarly 
constrained; they are too small a t  6 = 0.25. The observations support the view 
that the first eigenfunction is predominant in establishing the temperature field, 
with higher modes having little effect other than siphoning energy from the 
dominant mode. Variability of the profiles in time indicates that an average 
through a distance equivalent to 4-6 wavelengths is not representative of an 
infinite array. 

Finally, the power of the interferometric method of probing air layers has been 
amply illustrated. Not only have temperatures been measured with good accur- 
acy, but information about horizontal variations across the beam, details of the 
isotherms in the centre or boundaries, and time variability of mean profiles can 
be extracted. Clearly, this method can provide a detailed view of the beguiling 
complexities of a fluid layer heated from below. 
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FIGURX 3. Horizontal fringes (central mode). (a) h = 1.48, (6) h = 3.6; (c)  A = 16.0; ( d )  
h = 16.0, 20 s after (c); (e) h = 16.0, 2 s after (d ) .  Dark line is vertical fiducial mark. 

(Facing p .  381) 
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FIGITRE 4. Horizontal fringes (boundary mode), h = 16.0. ( b )  20 s after (u) .  A 
r,,gion of warm fluid can be seen rmching the iipptv plate. 

FIGTJRE 5 .  Interference fringes for run 2 .  Vacuum reference on right, air conducting 
on left. Fringes are rotated in cloclcuisc scme. 
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FIGURE 6. Interference fringes, showing distortion of temperature by fluid motion. Vaciiiiin 
reference is on right, convecting air is on left. (a) h = 1-45; (b )  h = 3.81; (c) h = 16.0. 
Fringes are rotated in counter-clockwiso sense. 




